UNIVERSIDAD DE LOS ANDES

DEPARTAMENTO DE INGENIERÍA CIVIL Y AMBIENTAL Segundo Semestre de 2019

ICYA 4709- ANÁLISIS DE HIDROSISTEMAS

PROFESOR: MARIO DIAZ-GRANADOS (mdiazgra@uniandes.edu.co), Oficina ML776

MONITOR: por definir

HORARIO: Martes y Jueves de 14:00 a 15:20

SALON: B-203

Descripción

ICIV4709. Concepto de hidrosistemas. Elementos básicos de la economía del bienestar y del análisis de beneficio-costo aplicados a hidrosistemas teniendo en cuenta las características económicas del los recursos hídricos. Procesos de planeación de hidosistemas, actores principales y funciones. Modelación de hidrosistemas con control. Técnicas de Investigación operacional aplicadas al análisis de hidrosistemas: programación lineal y lineal estocástica, programación dinámica y dinámica estocástica, multiplicadores de Lagrange. Técnicas de simulación estocástica. Formulación y análisis de hidrosistemas de abastecimiento de agua potable, hidroelectricidad, riego y drenaje y control de inundaciones. Aplicabilidad de análisis multiobjetivo en planeación de hidrosistemas.

Temas:

- 1. Introducción: Concepto de hidrosistema. Bienestar social. Optimización (3 horas)
- 2. Características económicas del agua. Conceptos básicos de economía del Bienestar: (1.5 horas)
- 3. Análisis Costo-Beneficio. Ejemplos (1.5 horas)
- 4. Planeación del aprovechamiento y control de los recursos hídricos (1.5 horas)
- 5. Modelación de sistemas. Sistemas con control (3 horas)
- 6. Simulación estocástica de hidrosistemas: *variables aleatorias, hidrología estocástica, técnicas de simulación* (6 horas)
- 7. Programación lineal y lineal estocástica. Aplicaciones (6 horas)
- 8. Programación dinámica y dinámica estocástica. Aplicaciones (4.5 horas)
- 9. Análisis de costo mínimo (3 horas)
- 10. Formulación y Análisis de Proyectos en Sectores de Agua Potable, Hidroeléctrico, Riego y Drenaje y Regulación y Control de Inundaciones. (4.5 horas)
- 11. Análisis multiobjetivo (1.5 horas)
- 12. Dos parciales (3 horas)

Prerrequisitos deseables:

- 1. Análisis y diseño hidrológico.
- 2. Parámetros y modelación de la calidad de agua.
- 3. Conceptos básicos de economía general
- 4. Cálculo diferencial
- 5. Probabilidad: distribuciones discretas, continuas y mixtas. Análisis probabilístico.
- 6. Estadística: concepción e interpretación de análisis estadísticos.
- 7. Programación de computadores

Uso del computador:

- 1. Tarea en el tema 7 que requiere el uso de un programa de programación lineal
- 2. Tareas en los temas 6, 9 y 10 que requieren el desarrollo de programas en BASIC, FORTRAN, PASCAL, C, Matlab, Maple o Madcad y/o uso de hojas electrónicas o cualquier otro recurso computacional.

EVALUACION DEL CURSO: 3 parciales 20% cu; Tareas/trabajos 40%. No habrá Examen Final. Fechas previstas para los tres parciales: <u>Parcial 1</u>: 5 de septiembre; <u>Parcial 2</u>: 17 de octubre; <u>Parcial 3</u>: 28 de noviembre. Nota final = promedio ponderado aproximado con 2 cifras decimales.

REFERENCIAS PRINCIPALES:

- 1. Castro, R. y K. Mokate, <u>Evaluación Económica y Social de Proyectos de Inversión</u>, Facultad de Economía, Universidad de los Andes, 1996.
- 2. Henderson, J. y R. Quandt, Micro-economic Theory, McGraw-Hill, 1971.
- 3. James, L. y R. Lee, Economics of Water Resources Planning, McGraw-Hill, 1971.
- 4. Loucks, D., J. Stedinger y D. Haith, Water Resource Systems Planning and Analysis, Prentice-Hall, 1981.
- 5. Loucks, D. y van Beek, <u>Water Resources Systems Planning and Management</u>, An Introduction to Methods, <u>Models and Applications</u>, Unesco Publishing, 2005.
- 6. Mays, L. W. y Y. Tung, Hydrosystems Engineering and Management, McGraw-Hill, 1992.
- 7. Mays, L., editor, Water Resources Handbook, Mc-Graw-Hill, 1996.

OTRAS REFERENCIAS:

- 1. Banco Interamericano de Desarrollo, BID, Monografías varias sobre Análisis de Proyectos.
- 2. Biswas, A. K., Systems Approach to Water Management, McGraw-Hill Kagahusha, 1976.
- 3. Call, S. y W. Hollahan, Microeconomía, Grupo Editorial Iberoamericano, México, 1983.
- 4. CEDE, <u>Estimación de la Tasa Social de Descuento para Colombia</u>, Facultad de Economía, Universidad de los Andes, Santafé de Bogotá, 1992.
- 5. deNeufville, R. y J. Stafford, Systems Analysis for Engineers and Managers, McGraw-Hill, New York, 1971.
- 6. Eckstein, O., Explotación de Recursos Hidráulicos, Compañía General de Ediciones S. A., México, 1964.
- 7. Eckstein, O., <u>Water Resource Development: The Economics of Project Evaluation</u>, Harvard Univertity Press, 1968.
- 8. Ferguson, C. E. y J. P. Gould, <u>Teoría Microeconómica</u>, Fondo de Cultura Económica, Tercera Edición, México, 1980.
- 9. Field, B. C., Environmental Economics, An Introduction, McGraw-Hill International, 1994.
- 10. Fonade y DNP, Estudio Nacional de Aguas, 1984.
- 11. Fontaine, E., Evaluación Social de Proyectos, 12 edición, Alfaomega, 1999.
- 12. Freeman, A., Control de Contaminación del Agua y el Aire. Evaluación Costo-Beneficio. Limusa, 1987.
- 13. Gittinger, J. Economic Analysis of Agricultural Projects, EDI, World Bank, 1982.
- 14. Howe, C., Benefit-Cost Analysis for Water Planning, AGU, 1971.
- 15. Hufschmidt, M. y M. Fiering, <u>Simulation Techniques for Design of Water Resource Systems</u>, Harvard University Press, 1986.
- 16. Just, R., D. Hueth y A. Schmitz, Applied Welfare Economics and Public Policy, Prentice Hall, New York, 1982.
- 17. Kuiper, E., Water Resources Project Economics, Butterworth & Company, 1971.
- 18. Kuiper, E., Water Resources Development: Planning, Engineering and Economics, Butterworth, 1965.
- 19. Layard, R. (ed.), Análisis Costo Beneficio, Fondo de Cultura Económica, México, 1978.
- 20. Linsley, R., J. Franzini, D. Freyberg y G. Tchobanoglous, Water-Resources Engineering, McGraw-Hill, 1992.
- 21. López, S., Manual de Proyectos de Inversión, DNP, 1985.
- 22. Maass, A., M. M. Hufschmidt, R. Dorfman, H. A. Thomas, S. A. Marglin y G. M. Fair, <u>Design of Water Resource Systems</u>, Harvard University Press, 1962.
- 23. Marrero, N., <u>Técnicas de Optimización Aplicadas a la Ingeniería Hidráulica</u>, Editorial Ediciones, La Habana, 1985.
- 24. Mishan, E., Cost-Benefit Analysis, Allen & Irwin, Londres, 1988.
- 25. Mokate, K. M. y otros, <u>Evaluación Financiera de Proyectos de Inversión</u>, Facultad de Economía, Universidad de los Andes, 1996.
- 26. Ossenbruggen, P. J., Systems Analysis for Civil Engineers, Wiley & Sons, 1984.
- 27. Pearce, D. Y R. Turner, Economía de los Recursos Naturales y del Medio Ambiente, Celeste Ediciones, 1995.
- 28. Randall, A., Economía de los Recursos Naturales y Política Ambiental, Limusa, 1985.
- 29. Smith, A., E. Hinton y R. W. Lewis, Civil Engineering Systems Analysis and Design, Wiley & Sons, 1983.
- 30. Smith, S. y R. Castle, <u>Economics and Public Policy in Water Resources Development</u>, Iowa State University Press, 1965.
- 31. Universidad de Chile, <u>Desarrollo de los Recursos Hídricos</u>, OPS, 1975.
- 32. Water Resources Publications, Transfer of Water Resources Knowledge, WRP, Fort Collins, 1973.

JOURNALS DE REFERENCIA

<u>Journals de la ASCE</u>: Hydrologlic Engineering, Hydraulic Engineering, Irrigation and Drainage, Water Resources Planning & Management, Computing Engineering; **2**. Advances in Water Resources; **3**. Journal of Hydrology; **4**. Water Resources Bulletin; **5**. Water Resources Research; **6**. Groundwater; **7**. Groundwater Monitoring Review, etc.

PROGRAMA

Sem	Día	Fecha	Sesión	Tema	Notas
1	Ma	6-Aug	1	Introducción. Concepto de hidrosistema. Agua: recurso y amenaza	
	Ju	8-Aug	2	Bienestar económico.	
2	Ma	13-Aug	3	Mercados. Competencia perfecta. Caso del agua. Naturaleza de la oferta de agua	
	Ju	15-Aug	4	Naturaleza de la demanda de agua. Externalidades en el mercado	
3	Ma	20-Aug	5	Demanda: comportamiento consumidor. Oferta: producción, curvas de costos	
	Ju	22-Aug	6	Mercados con distorsiones	
4	Ma	27-Aug	7	Evaluación económica de proyectos	
	Ju	29-Aug	8	Manejo de los recursos hídricos/hidráulicos	
5	Ma	3-Sep	9	Modelación. Séptupla para caracterización de hidrosistemas. Acoples de sistemas	
	Ju	5-Sep	10	PARCIAL 1	
6	Ma	10-Sep	11	Acoples de sistemas. Componentes y subsistemas. Sistemas con control	
	Ju	12-Sep	12	Simulación estocástica	
7	Ma	17-Sep	13	Optimización con simulación. Generación de números aleatorios	
	Ju	19-Sep	14	Generación sintética de caudales	
8	Ma	24-Sep	15	Excel Thomas&Fiering y Lognormal, modelo multivariado AR	
	Ju	26-Sep	16	Modelo de desagregación. Otros modelos multivariados. Inclusión de El Niño	Día estudiante
	Ma	1-Oct		SEMANA DE RECESO	
	Ju	3-Oct			Oct 4: entrega nota 30%
9	Ma	8-Oct	17	Programación lineal. Ejemplo calidad de agua	
	Ju	10-Oct	18	Método simplex. Dualidad	Oct 11: última fecha retiros
10	Ma	15-Oct	19	Herramientas computacionales. LINDO	
	Ju	17-Oct	20	PARCIAL 2	
11	Ma	22-Oct	21	Programación lineal: ejemplo distrito de riego	
	Ju	24-Oct	22	Taller PL: ejemplo riego modificado	
12	Ma	29-Oct	23	Programación lineal: ejemplos hidrograma unitario y pico secuente	
	Ju	31-Oct	24	Ejemplos a desarrollar por los estudiantes	
13	Ma	5-Nov	25	Técnicas de linearización, programación lineal entera	
	Ju	7-Nov	26	Programación no lineal, convexidad	
14	Ma	12-Nov	27	Multiplicadores de Lagrange y programación dinámica	
	Ju	14-Nov	28	Programación dinámica: ejemplos de asignación y de operación de embalses	
15	Ma	19-Nov	29	Análisis de costo mínimo	
	Ju	21-Nov	30	Análisis de costo mínimo	
16	Ma	26-Nov	31	Modelos multiobjetivo	
	Ju	28-Nov	32	PARCIAL 3	
				NO HAY EXAMEN FINAL	

COMPORTAMIENTO EN LA UNIVERSIDAD

El miembro de la comunidad que sea sujeto, presencie o tenga conocimiento de una conducta de maltrato, acoso, amenaza, discriminación, violencia sexual o de género (MAAD) deberá poner el caso en conocimiento de la Universidad. Ello, con el propósito de que se puedan tomar acciones institucionales para darle manejo al caso, a la luz de lo previsto en el protocolo, velando por el bienestar de las personas afectadas. Para poner en conocimiento el caso y recibir apoyo, usted puede contactar a:

Línea MAAD: <u>lineamaad@uniandes.edu.co</u>

Ombusdperson: ombudsperson@uniandes.edu.co

Decanatura de estudiantes: centrodeapoyo@uniandes.edu.co

Red de estudiantes: PACA (pares de Acompañamiento contra el Acoso): paca@uniandes.edu.co

Consejo Estudiantil Uniandino (CEU): comiteacosoceu@uniandes.edu.co