El Centro de Investigaciones en Ingeniería Ambiental (CIIA) de la Universidad de los Andes tiene el gusto de invitarlos al cuarto seminario titulado “Sistemas de Soporte a las Decisiones para el Manejo Integral del Agua en Cuencas Altamente Intervenidas” a cargo de Tania Fernanda Santos, estudiante del Doctorado en Ingeniería de Uniandes y Magíster en Recursos Hidráulicos de la Universidad Nacional de Colombia.


El Centro de Investigaciones en Ingeniería Ambiental (CIIA) de la Universidad de los Andes tiene el gusto de invitarlos al tercer seminario titulado “Fundamental and Applied Approaches to Microbial Electrochemistry Using Thermophilic Microbial Electrochemical Cells”, a cargo de Bradley Lusk, PhD. in Biological Design de Arizona State University y biólogo de esta universidad.





Microbial Electrochemical Cells (MxCs) are a versatile technology that allow researchers to gain insights into the fundamental physiology of bacteria that are capable a performing anode respiration- anode respiring bacteria. In addition, MxC technology can be used for sustainable wastewater filtration since it couples the removal of contaminants in wastewater with the production of power, hydrogen gas, or other high-value products. In this presentation, I will discuss the important uses of MxC technology for fundamental and applied applications using thermophilic anode respiring bacteria (ARB) as a model.

Bradley actualmente dirige el proyecto www.ScienceTheEarth.com, un blog y una comunidad web que trata las divisiones culturales a través de la ciencia y el descubrimiento.

Fecha: viernes 17 de Marzo de 2017
Hora: 9:30 am a 11:00 am
Lugar: Universidad de los Andes - Salón O 405

Idioma: La presentación será en inglés.

El Centro de Investigaciones en Materiales y Obras Civiles (CIMOC) de la Universidad de los Andes tiene el gusto de invitarlos al Seminario de Estructuras con Shirley J. Dyke y Julio A. Ramírez de Lyles School of Civil Engineering de Purdue University.

Por favor confirmar asistencia AQUÍ antes del medio día del martes 14 de marzo (para personas externas a la Universidad de los Andes).

Salón confirmado: ML 513





Dealing with the Realistic Challenges of Real-time Hybrid Simulation for Structural Evaluation”, Shirley J. Dyke.


Real-time Hybrid Simulation (RTHS) is a novel technique used to examine the global behavior of structural systems that are too large or complex to test in the laboratory. RTHS offers the opportunity for global evaluation of structural systems subject to extreme dynamic loading, typically with a significant reduction in time and cost.  Physical specimens are linked with computational models, and the challenge is to ensure that the combined system is tested under realistic conditions. Thus, boundary conditions at the interface between the physical and computational portions must be enforced, and hydraulic actuators are frequently used. However, the relatively slow dynamics of the actuator and the presence of feedback loops, mean that delays and lags hinder realistic simulations, and thus control is needed. Because the system being examined is not well understood (which is the point of the test), control design must be performed under deep uncertainty. After examining how partitioning influences stability, we have proposed a predictive stability indicator (PSI), as well as a parallel method to examine the performance, or accuracy, of the results of an RTHS called the predictive performance indicator (PPI). The intention is to provide the tools to actually design an RTHS experiment in advance. To deal with the realistic challenges of RTHS, we describe how these tools enable researchers to identify the requirements to perform a successful RTHS test


Dr. Shirley J. Dyke is a professor of mechanical engineering and a professor of civil engineering at Purdue University.  She was born near Chicago, Illinois, USA in 1969. She received her B.S. in Aeronautical and Astronautical Engineering from the University of Illinois, Champaign-Urbana and her Ph.D. degree in Civil Engineering from the University of Notre Dame in 1996.  She was the Edward C. Dicke Professor of Engineering at Washington University in St. Louis until 2009. Professor Dyke teaches courses in structural dynamics, experimental methods and probability. Dr. Dyke was awarded the Presidential Early Career Award for Scientists and Engineers (1998), the Short-term Invitation Fellowship from the Japan Society for the Promotion of Science (1998, 2000), the International Association on Structural Safety and Reliability Junior Research Award (2001) and the ANCRiSST Young Investigator Award (2007). Dr. Dyke’s research efforts have addressed a variety of issues related to the development and implementation of “smart” structures, including innovative control technologies for natural hazard mitigation, and structural health monitoring and damage detection. Dr. Dyke established the Intelligent Infrastructure Systems Lab at Purdue's Bowen Lab.




The National Hazards Engineering Research Infrastructure (NHERI) and Its Network Coordination Office (NCO), Julio A. Ramírez.


On July 1, 2016 the Purdue University led team was officially named as the recipient of the Network Coordination Office (NCO) for the NSF­‐sponsored Natural Hazards Engineering Research Infrastructure (NHERI). The Natural Hazards Engineering Research Infrastructure (NHERI) is supported by the National Science Foundation (NSF) as a distributed, multi­‐user national facility that will provide the natural hazards research community with access to research infrastructure. NHERI is comprised of separate research infrastructure awards for a Network Coordination Office (NCO), Cyberinfrastructure (DesignSafe­‐CI), Computational Modeling and Simulation Center, and eight Experimental Facilities, including a post­‐disaster, rapid response research facility (RAPID). Information about the unique capabilities of these facilities can be found at: https://www.designsafe­‐ci.org/facilities/experimental/ 


This Purdue­‐led Network Coordination Office (NCO) center: (a) serves as a focal point and leader of a multi­‐hazards research community focused on mitigating the impact of future earthquakes and windstorms, and related hazards such as tsunamis and storm surge on our nation's physical civil infrastructure; (b) leads education and outreach activities; (c) works with our partner NHERI Experimental Facilities to ensure the efficient testing and user support within a totally safe environment. We will centrally coordinate the schedule and facilitate shared technical knowledge and best practices among the Experimental Facilities; and (d) develops strategic national and international partnerships and coordinates NHERI activities with the other awardee components to form a cohesive and fully integrated global natural hazards engineering research infrastructure that fosters collaboration in new ways. In this presentation, NHERI is described and the NCO key planned activities in Year­‐1 are discussed.


Dr. Julio A. Ramirez is a Professor of structural engineering in the Lyles School of Civil Engineering of Purdue University. He is the Principal Investigator and Center Director of the Network Coordination Office (NCO) of the NSF funded Natural Hazards Engineering Research Infrastructure (NHERI). Dr. Ramirez is a voting member of the technical Joint Committee ACI­ASCE 445, Shear and Torsion; and ACI­ASCE Committee 408, Bond and Development of Reinforcement. He served as the chief officer for the George E. Brown Jr. Network for Earthquake Engineering Simulation (NEES) during the period of October 2009 to September 2015. He has served as an Associate Editor for the Committee on Concrete and Masonry Structures (CCMS) Division of the American Society of Civil Engineers (ASCE) Structural Journal and has been a member of several National Cooperative Highway Research Program (NCHRP) research panels. Prof. Ramirez has served in NSF proposal review panels for several directorates. Dr. Ramirez is a Fellow of the American Concrete Institute and the recipientof the 2000 Delmar Bloem Award and the 2006 Joe W. Kelly Award of the American Concrete Institute.

For the past 30 years Prof. Ramirez has been teaching and conducting research in structuralengineering. His areas of expertise cover design, evaluation of performance and code development of reinforced and prestressed concrete bridges and buildings. Since 1994, Prof. Ramirez has been involved in eight­reconnaissance missions following the earthquakes of Northridge CA, Manzanillo Mexico, Kobe Japan, Duzce­Bolu Turkey, Puebla Mexico, Armenia Colombia, and Bingol Turkey. The goal of these missions was to gather perishable data on the performance of reinforced and prestressed concrete bridges and buildings immediately following major earthquakes in what constitutes a major real life and very costly test of the built environment in order to synthesize lessons that could help mitigate the impact of earthquakes on society. He was also engaged as project Co­PI in the recently completed NSF funded study “Mitigation of Collapse Risk in Vulnerable Concrete Buildings” aimed at identifying collapse triggers in non­ductile reinforced concrete buildings subjected to seismic actions. Dr. Ramirez has also led the training of personnel for the post­earthquake safety evaluation of bridges for the Indiana Department of Transportation, and the identification of emergency routes for the state. He has collaborated with the Indiana State Management Agency (SEMA) in efforts to establish of a volunteer coalition to assist the Indiana Department of Homeland Security in the condition assessment of buildings after a natural or man­made disaster. His research work in the area of bond of mild reinforcement and prestressing strand in high­strength concrete has been widely referenced and serves as the basis for the extension of the AASHTO LRFD Specifications on development of mild reinforcement and prestressing strand to higher strength concretes. 

Fecha: Miércoles 15 de Marzo, 2017 
Hora: 11:00 am - 12:30 am 
Universidad de los Andes - Salón ML 513

El Centro de Investigaciones en Ingeniería Ambiental (CIIA) de la Universidad de los Andes tiene el gusto de invitarlos al segundo seminario del semestre titulado “Estimación de la superficie del terreno cambiante en las Montañas Rocosas por medio del desarrollo de un producto fusionado”, a cargo de Nicolas Rodriguez Jeangros, candidato a PhD. in Environmental Engineering Science y asistente de investigación del Civil and Environmental Engineering Department, Colorado School of Mines.


Nicolás Rodríguez Jeangros
Asistente de Investigación, Civil and Environmental Engineering Department, Colorado School of Mines.
Candidato a PhD. in Environmental Engineering Science, Colorado School of Mines.
Magíster en Ingeniería Ambiental, Universidad de los Andes
Ingeniero Ambiental e Ingeniero Químico, Universidad de los Andes

El estudio del agua superficial y subterránea en un medio ambiente cambiante requiere primero una caracterización espacial y temporal detallada del medio ambiente. La cobertura de la superficie terrestre (CST) es una variable crítica que determina en gran medida varios procesos hidrológicos. Por ende, el monitoreo, la evaluación, y la caracterización de la CST es esencial para informar una gran variedad estudios que analizan procesos hidrológicos. Sin embargo, los productos de CST existentes, procedentes principalmente de clasificación de imágenes satelitales, tienen diferentes resoluciones temporales y espaciales, cómo también diferentes clasificaciones de tipo de CST. Estudios anteriores se han enfocado en fusionar un par de productos de CST en una región espaciotemporal pequeña o en interpolar los valores faltantes en un solo producto de CST. Nosotros desarrollamos un método para fusionar múltiples productos de CST para producir un único record de CST en una región extensa en las dimensiones temporal y espacial. Primero, nosotros reconciliamos las clases de CST de los diferentes productos y luego presentamos un estimador probabilístico de vecindad cercana para cada clase de CST. Cada celda o pixel en la malla/raster tiene un estimador independiente. Consecuentemente, la estructura de la metodología es muy adecuada para una implementación computacional en paralelo. Dicha implementación se llevó a cabo en C++ usando librerías MPI para el paralelismo en varios supercomputadores. Nosotros ilustramos la metodología usando seis productos de CST en las Montañas Rocosas de los Estados Unidos, produciendo un producto de CST mejorado con alta resolución y mapas anuales durante un periodo de 30 años. Éste producto con dicha frecuencia y resolución, y sin precedentes similares, tiene como objetivo informar y apoyar estudios climatológicos e hidrológicos a pequeña y gran escala en la región de las Montañas Rocosas.

The study of water in a changing environment requires first a detailed characterization of this environment in space and time. Land cover (LC) is a critical variable driving many hydrological processes, so its assessment, monitoring, and characterization are essential inputs to study these processes. However, existing LC products, derived primarily from satellite spectral imagery, each have different temporal and spatial resolutions and different LC classes. Previous efforts have focused on either fusing a pair of LC products over a small space-time region or on interpolating missing values in an individual LC product. We developed a method for fusing multiple existing LC products to produce a single LC record for a large spatial-temporal grid. We first reconcile the LC classes of different LC products, and then we present a probabilistic nearest neighbor estimator of LC class. This estimator depends on three unknown parameters, which are estimated using numerical optimization to maximize an agreement criterion that we define. Each pixel in the grid has an independent estimator, and therefore, the methodology is highly suitable for a parallel implementation. We implemented the methodology in C++ using MPI libraries for the parallelism in supercomputers. We illustrate the method using six LC products over the Rocky Mountains, producing an enhanced high-resolution LC product with yearly maps over a period of 30 years. This unprecedented high frequency/resolution LC product aims to inform and support small and large scale hydrological and climatological studies in the Rocky Mountain region.

Fecha: Viernes 3 de Marzo, 2017 
Hora: 9:30 am - 11:00 am 
Salón: O 405 
¡Entrada libre!

El Centro de Investigaciones en Materiales y Obras Civiles - CIMOC de la Universidad de los Andes tiene el gusto de invitarlos al Seminario de Estructuras "Barras de refuerzo compuestas para estructuras de concreto: diseño estructural y aplicaciones", a cargo del director de ingeniería de la fábrica Pultrall Inc.: Samuel Doucet.


Viernes 24 de febrero de 2017 – 11:00 a.m. a 12:30 p.m.

Lugar: Universidad de los Andes, Salón ML 603

Entrada libre


Las barras de refuerzo compuestas para estructuras de concreto se comenzaron a fabricar a finales de los años 70. Han demostrado ser una solución real al problema de la corrosión y poseen una serie de características que amplían los límites de la filosofía y el diseño estructural. Diversos estudios sobre la efectividad y la durabilidad de algunos métodos de protección de barras de refuerzo (cubierta de concreto reforzada, concreto de alto rendimiento, protección catódica, membranas impermeables) han demostrado que no resuelven el problema de la corrosión.

Las barras de refuerzo compuestas poseen además una resistencia superior a la tensión; expansión térmica comparable a la del concreto; neutralidad electromagnética; son cerca de cuatro veces más livianas que el acero; con corte fácil; reducen los riesgos de accidentes laborales; se pueden fabricar longitudes, ángulos o curvas de secciones especiales según diseño; reduce costos de construcción y de ciclo de vida de la estructura y tienen menor impacto ecológico.

Estas barras se fabrican con fibras de vidrio y con resina de éster de vinilo ambas altamente resistentes. Las fibras de vidrio confieren resistencia a la barra mientras que la resina de éster de vinilo proporciona excelentes propiedades de resistencia a la corrosión en entornos alcalinos y químicamente agresivos. También se usa el compuesto de carbono/éster de vinilo para estructuras que requieran una mayor rigidez y mejores propiedades mecánicas. Además, estudios de laboratorio y pruebas sobre el terreno han demostrado que barras de refuerzo compuestas podría ofrecer una expectativa de vida de más de 100 años en condiciones de servicio.

La conferencia presentará además las aplicaciones exitosas de este producto en obras de ingeniería alrededor del mundo, mencionará los códigos y guías de diseño actuales, así como las líneas de investigación y desarrollo en curso y necesarias para resolver retos de sismo resistencia.